The research group of Dr. Igor Zlotnikov from the Center for Molecular Bioengineering (B CUBE) of TU Dresden demonstrate in its latest publication that the physics of materials has a strong impact on the possible structures that molluscan shells can produce. This research shows how fundamental physical laws, such as crystal growth kinetics and thermodynamics, can constrain the outcome of evolution and helps explain why we see the repeated development of certain structures through deep time.
The Zlotnikov research group in collaboration with scientists from the Wigner Research Centre for Physics in Budapest, Hungary now developed a comprehensive experimental and theoretical framework to analytically describe the process of ultrastructural morphogenesis of molluscan shells. Mainly, they demonstrated that the formation of these highly biomineralized tissues is guided by the organisms by regulating the chemical and physical boundary conditions that control the growth kinetics of the mineral phase.
By showing a direct link between physics of materials and the process of biomineralized tissue morphogenesis, the team sheds a new light on the evolutionary aspect of the fabrication of biological materials.
The study is published in the Proceedings of the National Academy of Sciences.
Source: Technische Universitat Dresden [September 24, 2019]
No comments:
Post a Comment